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Controlling neuronal spikes
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We propose two control strategies for achieving desired firing patterns in a physiologically realistic model
neuron. The techniques are powerful, efficient, and robust, and we have applied them successfully to obtain a
range of targeted spiking behaviors. The methods complement each other: one involves the manipulation of
only a parameter, the applied soma current, and the other involves the manipulation of only a state variable, the
membrane potential. Both techniques have the advantage that they are not measurement-intensive nor do they
involve much run-time computation, as knowledge of only the interspike interval is necessary to implement
control.
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I. INTRODUCTION ablesh, n, s, ¢, and g; the Ca level[Ca]; and the soma
voltageV, and dendrite voltag¥y. The parameters include
A wide range of phenomena occurs in nature and in théhe coupling conductance between soma and dendgite
laboratory, ranging from highly coherent ones such as synreversal potential®/y,, Vca, Vi, Vi, Vs, i0nic conduc-
chronized oscillator arrays to highly disordered systems suctancesg;, Ona, 9kpr: 9cas Ikanp» Jkca, Synaptic conduc-
as seen in fluid turbulence. Control mechanisms that enabletancesgymvpa » 9ampa . relative area of soma to dendripe
system to maintain a fixed activitghe “goal” or “target”) = membrane capacitanecg,, and the applied soma current
even when intrinsically chaotic have many applications in  The gate equations are of the form
situations ranging from biologfas in the control of cardiac
rhythmsg to engineerindg1]. In neuronal systems, in particu- dh
lar, a wealth of complex patterns has been experimentally gt~ A—han—hBy, 1)
observed in a variety of casg®]. However, the mechanisms
by which such complex spiking patterns can be manipulated
are not well understood. It is thus of considerable interest @=(1—n)a —ng )
and potential utility todevice control algorithms capable of dt n n
achieving the desired type of behaviarsuch complex sys-
tems. In this paper, we offer two complementary control s
strategies targeting desired firing patterns in a prototypical a=(1—s)as—sﬁs, (3
model of a Hippocampal neuron: the Pinsky-Rinzel model
[3]. First we describe the model neuron below.

dc
gt =(1-C)ac—che, 4
Il. THE PINSKY-RINZEL MODEL NEURON

Based on extensive physiological data, Traub developed a q
120-variable 19-compartment model of a pyramidal cell gt~ (1~ Deq—ahq, )
from the CA3 region of the hippocampus of the brad.
Subsequently, Pinsky and Rinzel reduced this to an eigh
variable two-compartment model while still preserving its
physiological relevancg3]. This is the model that we will
use to explore ways of manipulating the responses of th

1i?\lherea and B are phenomenologically determined from ex-
perimental data so as to mimic the opening and closing of
(ranembrane gates]:

neuron. 0
The Pinsky-Rinzel model neuron consists of somatic and ap=0.128 ex’éﬂ-_\/s)' (6)
dendritic compartments resistively coupled at different po- 18.0
tentials. A patch of the cell membrane is modeled as an
equivalent electrical circuit consisting of a resistor and a ca- 40.0- V,
pacitor in parallel. The current balance equations for the two Bn=4 0/ 1.0+ ex;{ T) ] (7)
compartments follow from differentiating the capacitance '
definition. The details of the model, the values of the param- 351V
eters, and initial conditions are given bel$8i. _ _ Vs
The eight variables in the model are the five gating vari- an=0.01635.1 VS)/ ex;{ 5.0 ) 1'0}’ ®
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B,=0.25 ex§0.5— 0.025/,), (9)

1.6
T 1.0+ ex —0.072V4—65.0]"

(10

as

,BS=0.02(Vd—51.1)/ (w

V4—10.0 V4—6.5 ,
ac=1ex 18.975 if V4=<50.0,

— 1.0], (11)

11.0 27.0
(12
6.5— V4 _
Be=2.0ex) 0| ~ac if V4=500, (13
6.5-Vq| .
a.=2.0ex 270 if V4>50.0, (14
B.=0.0 if V4>50.0, (15)
aq=min(0.000 02Ca],0.03), (16)
B4=0.001, (17)
0.3713.1- V)
T (13.1-Vy) 10’ (18
0.28V—40.1)
Ps=T(V—40 o (19
ex ———igzy————- .
! (20
Tm= ,
m amt Bm
M= T - (22

The Ca level is given by

d[Ca] 2
= -0079Ca - 0.130cd Ve~ Ved, (22
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. (Vs—Va)
Is=— QCST_ g(Vs— V) — gNamchh(Vs_ Vo)

i
— gkorN(Vs— Vi) + g. (25)

The iy is a sum of electrotonic coupling-g.(Vy
—V)/(1-p), leak current-g,(V4—V,), inward Ca current

—0cs?(Vg—Vea), K  after-hyperpolarization  current
—0kanrd(Va— Vi), Ca-activated K current
—OkcaMmin([Cal/250.0,1.0)¥4—Vk), synaptic current

—lisyn/(1—p), and dendrite electrode curreint/(1—p):
r.,=1.0{1.0+0.28 exp—0.062V4—60.0]}, (26)
I syn= INMDASNMDAT (V= Vgyn),s (27)

L (Vd_vs) 2
ig= _ch_QKVd_Vl)_QCaS (Va—Vea

_[[C4q]
— Ikarpd(Vg— Vi) — Gkcdmin myl-o (Va—Vk)

| syn lde

T (1-p) (1-p)

(28)

Thus the Pinsky-Rinzel neuron is a strongly nonlinear,
highly coupled, high-dimensional system. Now we will dem-
onstrate two complementary control algorithms, targeting
different spiking behaviors, in this neuron. It appears that the
parameter most accessible to external manipulation is the
applied soma current, and the variables one can monitor
and adjust with greatest ease are the voltageandV,. So
we will demonstrate the efficacy of our methods usamdy
these as input in the control algorithms.

The two methods we will introduce complement each
other. One is based on the manipulation of a paraméggr (
and the other involves the manipulation of a state variéble
Vs or V). Both do not require knowledge of the system’s
governing equations and are based on the instantaneous
value of a single variable of the systdgither voltageVg or

The rate of change of the soma and dendrite voltage is

given by differentiating the capacitance definiti@V=Q
=31, where a typical current is obtained fronR=r(V

—V,e), Wherer is the voltage-dependent gating variable:

dv, i,
at ooy (23
avy g
gt o (24)

where ig is a sum of the electronic coupling-g.(Vs

—Vy)/p, leak current—g,(Vs—V,), inward Na current
current

—gnaM2h(Vs—Vya),  delayed-rectifier K
—dkorN(Vs— Vk), and soma electrode curregt p:

Ill. ADAPTIVE FEEDBACK CONTROL

In adaptive control, one applies a feedback loop in order
to drive the system paramet@r parametelsto the valués)
required so as to achieve a desired target $&teConsider
a generalN-dimensional nonlinear dynamical system de-
scribed by the evolution equation

X=F(X;u;t), (29

where X=(X{,X,,...,Xy) are the state variables andis

the parameter whose value determines the nature of the dy-
namics. The adaptive control is effected by the additional
dynamics
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jr="y(P*=P), (30) P e B R T

g 80 ]
o r ]

whereP* is the target value of some variable or property S 60 - 3

(which could be a function of several variable$he value ook .

of the proportionality constany indicates the “stiffness of L 40 -

control,” which determines the strength of the feedback § r i

(much like the stiffness of a spring, if one considers the § <0 [ 7

feedback equation to be analogous to the restoring motion of § 0 L E

a spring. So theerror signal (P*—P) drives the system to ‘£ e s

the target state. The scheme is adaptive since in the above 0 100 200 300 400 500

procedure the parameters that determine the nature of the L L L L L

dynamicsself-adjustor adapt themselves to yield the desired o 80 E| (b)

dynamics, driven by the “dynamic feedback.” Note that the S L

relationship between the parameterand the monitored o r

property P should be monotoni¢though it need not be lin- T 40 [ \

ear, and in fact most often is ndi7]. = n

For the success of the method, the parametierEq. (30) g 20 |

should be a parameter capable of effecting large dynamical g 7) \) U

changes such that the feedback can drive its value to are- 0 e

gime that naturally supports the desired dynamics. The prop- 0 100 200 300 400 500

erty P should characterize the desired state well, and in ad- time (in msec)

dition be simply defined without explicit knowledge of the

system’s equations of motion. Furthermore, one would like FIG. 1. The time evolution of the membrane potentil (in

to achieve control without having to monitor a large numbermV) of the Pinsky-Rinzel neuron, for the cases(af uncontrolled

of variables. The technique set up by us incorporates all thBeuron showing infrequent irregular spiking behavioy=(1 nA);

above features. (b) the neuron under feedback control, with targ&t=15 ms and
Now we will apply this control principle on a Pinsky- _stiffness of con_trply=0.05 in Eg.(31). Note that the contrgl rap-

Rinzel neuron, targeting different spiking behaviors, i.e.,'dly leads to spiking at regular intervals of 15 ms, as desired.

states with different specific interspike intervals In this

demonstration, we will manipulate the applied soma currentegular. The initial state of the neuron has a current value

is, which appears to be the parameter most easily amenablgry far from that which yields the target. Clearly under

to quick manipulation, i.e., we will attempt to control the control dynamics, the neuronal system rapidly reaches the

neuronal spiking behavior withy as our choice fog in the  desired state, as is evident from comparing the dynamics

control Eq.(30). The procedure for reaching and maintaining with and without control[Figs. ¥a) and Xb)]. Figure 2

a particula!I, by adjusting the. applied qurre’r;tvia gdaptive shows the rapid evolution of the parameter to a value that
feedback, is then as follows: if the desired valuga$ 7* at supports the target state, as well as the rapid evolution of

all times, then the control equati¢with P=Z, P*=T7*, and property P=7 to its targeted value.

the controlled parmeter =is in Eq. (30)] is Once the system achieves the target, it remains there and
the control equation is “switched offfas the error signal is
naturally zero in Eq(31)]. If the parameters begin to drift
(for instance, due to environmental fluctuatiprthe control

Whergay IS the st|ffness Of. cont(ol and, is the current in- §utomatically becomes effective agaias the error signal

terspike interval, i.e., the time difference between the currenbecomes nonzero agaimnd it readily brings the system
ike and its immediately pr in . Thi ntrol -

spike and its ediately preceding off] > conro back to the desired state.

algorithm has the desired effect of tuning the valuésafuch The stiffnessy determines how rapidly the system is con-

that the dynamics of the combined equations yields a stead
state with§=1*. a Y rolled. The control time, defined as the time required to

Note that the control istroboscopic It is implemented reach the desired state, is crucially dependent on the value of

only at the onset of a spike. Whenever a spike occursZthe ¥- Numerical experiments show that for smalithe recov-
is measured and the feedback mechanism adjusts the curréiiy time is inversely proportional to the stiffness of control
according to Eq(31). (see Fig. 3
It should be emphasized that the control algorithm intro-  If we wish to target a more irregular firing state, we have
duced above does not requaepriori knowledge of the gov- to set a targef of larger than 30 ms, as the system can only
erning equations of the system. The only information necessupport irregular firing beyond thaf, and so the adaptive
sary to implement adaptive control is the currénvalue  mechanism leads to fluctuating curret which in turn
(i.e., the difference in the time at which the current spikeleads to irregular firing around a med&f. Thus we can
occurs and that at which the previous one had occurred achieve the desired effect of obtaining a state with very ir-
Figure 1 shows an example of controlling to a state withregular spikegsee Fig. 4 for a representative example of this
low fixed Z, namely a state where spiking is frequent and“anticontrol”).

is(n+1)=is(n)=AZ,—I%), (31
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FIG. 2. The time evolution ofa) the soma currerit (in nano-
amperes and (b) the interspike interval (in ms) for the Pinsky-
Rinzel neuron under adaptive feedback control With= 15 ms and
v=0.075 in Eq.31). The dashed line ifb) shows the target ISI of
15 ms. The initial soma current ig=1.0 nA, which when uncon-
trolled yields large and very irregulaf. Note that the control
switches off[as the error tem in E(31) goes to zerbwhen the

system reaches the target stéaet~400 ms).
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FIG. 3. The time evolution of the interspike intenal(in ms)
for the Pinsky-Rinzel neuron under adaptive feedback control with
T7*=20ms, and stiffness of controf equal to(a) 0.05 and(b)
0.005 in Eq.(31). The dashed line shows the targeiof 20 ms.
Note that withy=0.05, the target state is achieved in about half thefixed spiking patterns by manipulating not a parameter but a
time as compared witly=0.005.
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FIG. 4. The time evolution of the neuronal membrane potential
V, (in mV) for the cases ofa) the uncontrolled neuron showing
very frequent and regular spikings& 4.0 nA); (b) the neuron un-
der feedback “anticontrol,” where the target is a state with irregu-
lar firing. Here the target is set &t = 40 ms and stiffness of control
v=0.01 in Eq.(31). Note that the control rapidly leads to irregular
and infrequent spiking, as desired.

In real experiments, it is conceivable that the I1SI may not
be measured very accurately. Thus the technique outlined
above should be reliable with respect to noise in ISI deter-
mination, in order to be useful. We have checked that the
method indeed is successful even if the ISI fed into the feed-
back loop has a noisy spread amounting to up to 5% of the
targetedZ.

Finally, note that this control method has one limitation: if
the system does not have any parameter regime yielding the
targeted dynamical behavior, the adaptive control will fail to
achieve that particular target. So the method is capable of
achieving only those targets that have a stable basin of at-
traction somewhere in parameter space. This is usually not
much of a limitation, though, as nonlinear systems generi-
cally support many different dynamical behaviors in differ-
ent parameter regimes, as is evident from the rich bifurcation
structure in parameter space of most nonlinear systems. So in
this sense, adaptive control works like an efficient search
algorithm for varied dynamical characteristics in parameter
space, as is the case in this neuronal model for both regular
and irregular firing targetg3].

IV. THRESHOLD CONTROL OF A STATE VARIABLE

Now we describe how threshold mechanisms can be ef-
fectively employed to control neuronal systems onto stable

state variable of the system.
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First we discuss the general strategy of using threshold

mechanisms as a means of conf®]. Consider a general gv’; 8o - (@) ]
N-dimensional dynamical system, described by the evolution = 60 - ]
equationx=F(x;t), wherex=(x{,X»,...,Xy) are the state g r ]
variables, and variablg is chosen to be monitored and ma- g 40 [ J
nipulated. The prescription for threshold control in this sys- ? c ]
tem is as follows: control will be triggered whenever the < 20 - -
value of the monitored variable exceeds the critical threshold § E
x* (i.e., whenx;>x*) and the variable; will then be reset 5 o - 1 | | P
to x*. No knowledge ofF(x) is involved, and no computa- 200 300 400 500

— ©
—
(]
(]

tion is needed to obtain the necessary control. The dynamics
continues until the next occurrence @&f exceeding the 80
threshold, when control resets its valuexto again.

Note that the threshold control is stroboscopic as the
threshold condition is checked at finite intervalsmef Fur-
thermore resetting the value of the variablextoshould be
very fast compared to the natural dynamics of the uncon-
trolled system. So the state variables most accessible to ex-
ternal manipulation are the most suitable candidates for
thresholding.

In the context of neuronal systems, it is unrealistic to 200 300 400 500
implement the threshold mechanism on the gating variables time (in msec)
or the Ca levels QS it is unlikely that one Cah .mampUIate FIG. 5. The time evolution of the voltagds andVy (in mV)
these externally with ease. On the other hand, it is natural t?or the Pinsky-Rinzel neuron for the cases(af the uncontrolled
try and implement the threshold action on the somatic or Y : i .

o neuron showing infrequent and irregular spiking behaviby;the
dendritic voltages/s or V4, as they are much more acces-

. NG same neuron, with voltagé, under threshold control, with thresh-
sible to measurement and monitoring. Thus we demand thafiy v = 15 mv (herei.=1nA). Clearly, the controlled neuron

variable Vs or V4 must not exceed a prescribed thresholdgpikes at very regular intervals. The solid lines shéy¢—) and the

valueV* (1<V*<20mV) and we examine the scope of this gashed lines show/ (--). The interval at which the threshold

mechanism to yield regular firing behavior. condition is checked is 0.1 ms. The threshold voltageV&f
Figures 5-9 show some representative results of this-15my is shown by a dashed line--).

threshold action for a range of threshold values. It is clear

that the mechanism manages to yield complete regularity, af?equently (say 7.~1ms), one obtains spikes at exactly
compared with the very irregular and infrequent firing be'regular intervali;ee Fig. 6a)].

hﬁ‘j\'izr of _thbel nﬁurpn V\gth r:)ql_threscr;oldink?, with t?eh_thrhe_sn- Beyond a threshold value of about 5 mV, all thresholds
olded variable having the ability to drag the rest of this hign-y ;|4 ‘reqular spiking states, even when control is imple-

dimensional system to regular dynamical behavasre Fig. mented frequentlysee Figs. 7 and)8Note that these regular
5). The characteristics of the thresholded states, for mstanc'ﬁaring states have interspike interval values ranging from
its 1SI, are determined completely by the thresh@itl and about 14 to~60 depending on the applied soma currant

th?l int_erl\éal of CoerITCf'bTEe t_hrfeshollddmechani.srr]n typi- (see Fig. 7. Interestingly, the relationship between currgnt
cally yields two types of behavior: periodic stat@sith pe- .4 the interspike interval is ery well defined power law
riod 7.) and states with regular spikingvith interspike in-

tervals ranging from about 14 to 60 m&ow threshold and
frequent checking of the threshold conditiGre., small ;)
lead to the first dynamics and higher thresholds and larger
lead to regular firing states. where the exponeni~0.6 (see Fig. 8.

Figure 6 displays the behavior of the neuron under thresh- For thresholding on the somatic voltayg, one obtains
old mechanism on the dendritic potentig]. It is clear that  periodic states for short control intervals {~0.1 ms) for
the threshold mechanism very effectively brings the systenthresholds up to aboW* ~20mV [see Fig. ®)]. When
to a regular state, as compared with the very irregular andontrol is implemented infrequently, i.er,~1 ms, one ob-
infrequent firing behavior of the neuron with no threshold-tains (a) periodic states as usual for small thresholds
ing, given in Fig. %a). As mentioned before, the character- <10 mV, and(b) regular spiking states for large thresholds
istics of the thresholded states are determined completely byv* ~10mV), as is clearly seen in Fig(®.
the thresholdv* and the interval of controt, (i.e., the in- When the threshold is very lardelose to the upper limits
terval at which the threshold condition is checke&or of the spike,V*>20mV) or the interval of implementing
thresholds up t&/* ~5 mV, one obtains periodic states with control is very large f.>1 ms), the system under threshold
periodicity equal tor., when control intervals are short mechanism yields slightly irregular spiking states, with
(7.~0.1ms), as is evident in the example in the inset of Figmildly fluctuating ISI (though still much more regular than
6(b). When the threshold condition is checked and reset inthe unthresholded system
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FIG. 6. The time evolution of the voltag¥és (in mV) for a
Pinsky-Rinzel neuron, with/4 under threshold mechanism. Here
thresholdvV* =3 mV and the interval of controt. is equal to(a) 1
ms and(b) 0.1 ms. The inset ifb) shows a blown up section of the

figure, clearly showing a periodicity af, .

FIG. 8. Interspike interval IS[in ms) vs soma currentg (in
nanoamperegor the Pinsky-Rinzel neuron under threshold control

represeniV* =20 mV.

of voltage V. (The base of the logarithm in the plot &) The
interval at which the threshold condition is checked is 0.1 ms. The
triangles represent a threshold value/éf= 10 mV and the squares

[ I T T T T T T T T T T T T ] _‘ ] T T T T I T T F T T T T 1 T rTortT i I T "r""‘l“"[’_—i
~ 80 - -] - g
o O ra@ ; 80 M) ]
s I i ~ ]
i 60 - . ;60 [ ]
of 1 £ T 1
w40 — - v 40— -
o] F B ap E -
= f . T .
i X 3 20 F ]
v 20 N 3 - ]
Q) I e =3 r i
= - 3 r ]
5 ol V&/VV& V - 0 UU \) v UU -
> L - i e b o by v o b e o bl
= | L 1 ] 1 I 1 L ] 1 ] i L 1 1] l 1 Il 1 Il =1 O 100 200 300 400 500
100 200 300 400 500 ™ 1' T T T T l T T T T I T T T T ‘ T T T T | T T T T [ T
r T T T | B T T T 7 L T T — —
6o [ T T ; s B0, . ‘ .
T o ] = oo b : :
L i o 60 [ —
I e _ ", r f ]
o L ] E 0ol 1
5 C ] n : -
S 40 - - Y r ]
\‘: - ] :: 20 - 9'549;9| ;sgsl soo—j
g 20 |- - s T : :
E: | o/ ;
> - ! n oo by o by by e by b g
0 YVVVVVVVVVVVYVVVVVVYVVVVVVY 7 0 100 200 300 400 500
100 200 300 400 500 time (in msec)

time (in msec)
FIG. 9. The time evolution of the voltag€, (in mV) for a
FIG. 7. The time evolution of the voltagés (in mV) for a Pinsky-Rinzel neuron, with/; under threshold mechanism. Here
Pinsky-Rinzel neuron with voltagé, under threshold control, with  thresholdv* =10 mV and the interval for stroboscopic checking of
thresholdv* =10 mV, 7.=0.1, and the applied soma current equal the threshold condition equal f@) 1 ms and(b) 0.1 ms. The inset
to (@ is=0.5nA and(b) is=4 nA. Clearly the periodicity of spik- in (b) shows a blown up section of the figure, clearly showing a
ing is very different for the two cases. periodicity of ;.
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Note that the control transience is very short in thresholdvhere only one state variable is amenable to threshold con-
control. In threshold control, the system does not have to b&ol. Unlike in one-dimensiondllD) maps where the orbit is
close to any particular unstable fixed point before imple-trapped in a cycle as soon &g exceeds threshold, in higher
menting the control. Once a specified state variable exceedmensions we are not guaranteed that the remaining vari-
the threshold, it is caught immediately in a stable otb@de ables will take the same value at the next threshold control
Fig. 5. So there is no significant interval between the onsetvent. So the multidimensional orbit typically will not get
of control and the achievement of control, as a wide intervatrapped in a cycle as soon as one of its variables exceeds the
is open to targeting. Also, unlike most other control methodsthreshold. The issue in higher-dimensional systems then is
threshold control does not entail any run-time computationwhether or not the thresholded state varigblbich is essen-

during control _ tially like a pinned variablecan drag the rest of the system
The perturbations involved in threshold control are notygriaples to some fixed dynamical behavior.

large compared to the voltage spikes, which are of the order Last, note that this control method, though very rapid and

of 80 mV([see Fig. %a)]. We give a few representative Con- perfyl, js ultimately limited by the systems’s dynamical
trol perturbations here: for instance, when the threshold is 4 haracteristics. If the system’s dynamics does not yield a

mV and 7.=0.01, themaximumperturbation required to ef- certain desired regular behavior under any threshold, this

fect control is~0.5 mV, i.e., only~0.005 times the uncon- control method will fail to achieve that particular target.

trolled spike height. The resetting occurs stroboscopically i .
intervals of 0.01 ms, over a period of 0.5 ms, every 26 mgvlost often, though, the richness of chaos allows the dynam-

hich is th iod of spiki btained f this threshold 'S to.be “pruned” to many differenF kinds gf dynamical
\(/v;mg_ +Shat?sp$c::oabgufgls.lggrn2 ina:anr?int;?\r/gl 01‘326 rrﬁz ?hebehawor under the threshold mechanism. While for 1D maps

threshold control does not need to act. it can be proved that all possible periods can in principle be
We find that the maximum perturbation required for OPtained under varying thresholfi], this cannot be shown

thresholding is inversely proportional tg. So in order to  for continuous-time multidimensional systems. One then has

reduce the maximum perturbation, we can make the strobd® investigate the scope of the threshold method on different

scopic control more frequent. For instance, in the exampl&tate variables in different physical situations, case by case.

above, if we wanted the maximum perturbation to be on|yThis was the motivation behind our study on a realistic neu-

0.05 mV (i.e., ~0.0005 times the spike heightwe must ronal model here, and the investigation has provided clear

make 7.=0.001. evidence of the capacity of thresholding on the membrane
For lower threshold values which yield spiking at period- potentials to yield regular spiking of different periods.

icity equal to 7., the maximum perturbation is again in-

versely proportional ta.. So again the maximum perturba-

tion can be made small by making the stroboscopic control V. DISCUSSION
more frequent. For instance, for threshold at 0.1 mV, with .
7.=0.01ms, the maximum perturbation is 0.0074 rfi\é., In summary, here we have presented control algorithms

10* times smaller than the uncontrolled spike hejghthile ~ that can be used to achieve desired firing behavior in a neu-
for 7.=0.0001 ms the maximum perturbation is as low asfonal system. The methods complement each other: one in-
0.000074 mV. volves the manipulation of only a parameter, the applied
We also checked that the method works for slightly de-soma current, and the other involves the manipulation of
layed threshold action, which is a scenario where the variablenly a state variable, the membrane potential. Both tech-
is brought down to the threshold value after a small dédsy niques have the advantage that they are not measurement-
is conceivable in real setups where there may be a smaihtensive nor do they involve much run-time computation, as
delay between the detection of the crossing of the threshollnowledge of only the interspike interval is necessary to
condition and the resetting of the state varighWe find that  implement control. The power and robustness of the tech-
the method is still as effective. niques is demonstrated for targets ranging from quiet “non-
The basis of the marked success of the threshold methashiking” states to regular firing at different interspike inter-
is clear for one-dimensional mapsx,+,="f(X,). It is best vals, as well as for “anticontrol” to irregular firing patterns.
rationalized through the fixed points of the effective map The control of neuronal systems, while in its infancy, is of
obtained from the chaotic map under threshold mechanisnyjtal importance for both the understanding and the manipu-
i.e., with the additional constraint off(x,)=x* if f(x,) lation of neural dynamics. Potential applications range from
>x*. The fixed points of this “beheaded” map under vary- the suppression of seizures to computing with living neural
ing heights of truncatiori.e., different thresholdsgive dif-  tissue. While in naturally occurring systems isolated neurons
ferent superstable periodi8]. In terms of probability densi- rarely appear, there are technological developments in the
ties, the chaotic map under the threshold mechanism wilinterfacing of single/few neurons to silicon, as well as ex-
map large intervals onto severely contracting regions, angeriments on single neurons, which make the control of
this makes the transient period for control very small and thesingle neurons of considerable interest. The extensive effort
controlled periodic states superstable. to utilize single or groups of isolated neurofisterfaced to
One of the significant unanswered questions regardingilicon substratesfor various purposeéncluding computa-
threshold control is the following: it is not clear why the tion) is a significant motivation for elucidating mechanisms
method works so well for higher-dimensional systems,through which control can be implemented in such single
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neuronal systems. Additionally, this is the first step in themodels the types of neurons that are being interfaced to ar-
development of higher-dimensional, spatial methods of contificial substrateqsuch as silicop and therefore this study
trol for real neuronal arrays and assemblies. Thus the impofhas relevance in the design and implementation of artificial,
tant fact is that the model chosen for control here closelyneuroengineered living neural systems.
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